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[1] The complex interactions among climate variables in the Arctic have important
implications for potential climate change, both globally and locally. Because the Arctic is
a data-sparse region and because global climate models (GCMs) often represent Arctic
climate variables poorly, significant uncertainties remain in our understanding of these
processes. In addition to the traditional approach of validating individual variables with
observed fields, we demonstrate that a comparison of covariances among interrelated
parameters from observations and GCM output provides a tool to evaluate the realism of
modeled relationships between variables. We analyze and compare a combination of
conventional observations, satellite retrievals, and GCM simulations to examine some of
these relationships. The three climate variables considered in this study are surface
temperature, cloud cover, and downward longwave flux. Results show that the highest
correlations between daily changes in pairs of variables for all three data sets occur
between surface temperature and downward longwave flux, particularly in winter. There is
less variability in GCM output, in part, because there is greater spatial averaging.
Although the satellite products can be used to examine some of these relationships,
additional work may be needed to ensure consistency between changes in radiative
components of the energy budget and other retrieved quantities. The GCM’s relationships
between variables agree well with in situ observations, which provides some confidence
that the GCM’s representation of present-day climate is reasonable in high northern
latitudes. INDEX TERMS: 3349 Meteorology and Atmospheric Dynamics: Polar meteorology; 3359

Meteorology and Atmospheric Dynamics: Radiative processes; 9315 Information Related to Geographic

Region: Arctic region; 1694 Global Change: Instruments and techniques; KEYWORDS: Arctic, radiation, global
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1. Introduction

[2] Complex exchanges of energy and water among the
ocean, sea ice, and atmosphere cause the Arctic climate
system to be particularly sensitive to climate change be-
cause clouds, snow, and sea ice introduce a host of feed-
backs, some of which have powerful global effects [e.g.,
Curry et al., 1996]. Some of the changes observed during
recent decades in the oceanic and terrestrial northern high
latitudes are summarized in Serreze [2000]. Among these
are significant warming in most Arctic land areas, down-
ward trends in sea ice cover, and negative snow anomalies
over both continents.
[3] Modeling studies indicate that the polar regions play a

disproportionately important role in governing the global
climate system [e.g., Ingram et al., 1989; Rind et al., 1995].
Simulations of present-day climate by the many existing
global climate models differ widely from each other, espe-
cially in high latitudes. Gates et al. [1999] show a compar-

ison of winter sea level pressure and cloud cover in present-
day conditions computed by 31 different global climate
models (GCMs). The most probable causes for the large
disagreements in polar regions are related to unrealistic
parameterizations of the myriad of feedbacks. Despite these
significant differences among models, GCMs generally
agree that the Arctic will experience the strongest warming
in response to increasing concentrations of greenhouse
gases [e.g., Holland and Bitz, 2003]. Increases in temper-
ature are expected to be accompanied by changes in a wide
range of environmental parameters, such as sea ice extent
and thickness, cloud amount, precipitation, and river runoff,
but the magnitudes and even signs of some of these changes
are in dispute.
[4] Our understanding of the interactions and feedbacks

among the components of the Arctic climate system can be
significantly advanced by integrating new observations of
Arctic climate variables with global coupled, atmosphere-
ocean-ice models. Model-only studies are limited by being
insufficiently validated against observations, and observa-
tion-only studies are often limited by data scarcity or by
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poor spatial and temporal sampling. A recent Intergovern-
mental Panel on Climate Change (IPCC) comparison of
GCMs with and without sea ice dynamics showed no
difference in simulation quality, apparently because model
differences in surface forcing overwhelmed the results
[Intergovernmental Panel on Climate Change, 2001].
Recently available Arctic data sets, such as from satellite
sounders and imagers (e.g., Polar Pathfinder data sets from
TOVS [Francis and Schweiger, 2000] and the Advanced
Very High Resolution Radiometer (AVHRR) [Maslanik et
al., 1997]) field campaigns (e.g., the Surface Heat Budget of
the Arctic Ocean (SHEBA) [Uttal et al., 2002]), and Russian
drifting ice stations, offer new opportunities to evaluate and
improve GCM simulations. Even though their record lengths
are limited, these observations viewed separately and in
concert can be used to improve the accuracy of numerical
models by evaluating the realism of their output and ana-
lyzing feedback mechanisms and relationships among cli-
mate variables. While observations and GCMs individually
offer limited ability to study these relationships, the combi-
nation of the two constitutes a valuable tool.
[5] In this paper we compare observations with simulated

fields from the GCM of Russell et al. [1995]. The model
conserves water, includes many important high-latitude
feedbacks, and is internally self consistent. The observa-
tions are from the SHEBA experiment [Uttal et al., 2002]
and satellite retrievals. We compare modeled and observed
relationships among several different climate variables to
determine whether the GCM realistically represents these
interactions and whether the satellite-derived relationships
are consistent with the in situ SHEBA observations. A
previous study that compared relationships among observed
and GCM climate variables in the Arctic was by McGinnis
and Crane [1994] using a rotated principal component
analysis. Their focus was on large-scale spatial relation-
ships, while the focus in the present study is on local, short-
term, temporal relationships based on daily changes in each
variable. These relationships and sensitivities are the con-
trolling factors for feedbacks. As pointed out in Aires and
Rossow [2003], if the modeled sensitivities differ from
reality, so may the feedbacks that involve those variables.
The principal objective of this study is to extend observa-
tional and model studies by examining the relationships
among climate variables and the processes and feedbacks
that are most important in the high-latitude climate system,
including an attempt to quantify some of these relationships.
[6] Although there are many climate variables to consider,

the focus here will be on surface air and skin temperature,
cloud cover, and downward longwave flux (DLF). The
analysis of relationships among these variables can be
separated into three components. The first is to subset
satellite retrievals and GCM output for the SHEBA region
and time period. The second is to compare SHEBA mea-
surements directly with satellite retrievals from the Televi-
sion Infrared Observation Satellite (TIROS) Operational
Vertical Sounder (TOVS) and with GCM output. The final
component is to compare relationships among climate
variables measured by SHEBA to those from TOVS and
the GCM. In the following two sections of the paper we
describe the global climate model and the observational data
sets. Comparisons of parameters from GCM output, TOVS
satellite retrievals, and in situ measurements at the SHEBA

site are presented in section 4. Our conclusions are given in
Section 5, where we provide Table 2 to help summarize and
quantify the results.

2. Climate Model Description

[7] We use the global synchronously coupled atmo-
sphere-ocean-ice model developed by Russell et al.
[1995]. A model description is available at http://aom.giss.
nasa.gov/DOC/ATMOCEAN.TXT. The model has 9 verti-
cal layers in the atmosphere and 13 in the ocean. The
horizontal resolution for both the atmosphere and ocean is
4� in latitude by 5� in longitude. Heat, water vapor, and salt
have finer resolution because these quantities have both
mean values and directional gradients inside each grid cell
that are used in their advection. Atmospheric condensation
and ocean vertical mixing are performed on 2� � 2.5�
horizontal resolution. The ocean model includes the k
profile parameterization (KPP) vertical mixing scheme of
Large et al. [1994], does not use flux adjustments, does not
use the Boussinesq approximation, has a free surface, and
conserves mass and not volume. Freshwater is removed
from or added to the upper layer of the ocean by evapora-
tion, precipitation and river discharge. Continental runoff
and glacial ice melting eventually find their way back to the
oceans via a river network. Sea ice, which may fractionally
cover any ocean grid cell, has both thermodynamic and
dynamic components [Miller and Russell, 1997].
[8] The modeled cloud cover is diagnostically determined

from the cloud optical depths that, in turn, depend upon the
local temperature and the square root of the condensate
leaving each grid cell. Global constants of proportionality
(between optical depth and condensate) for each process
(moist convection or large-scale condensation) and for each
phase (liquid or ice) are chosen to match current radiative
observations. If the vertically integrated optical depth is less
than 1, no cloud cover is tabulated for that time step. When
the vertically integrated optical depth exceeds 1, a cloud is
present. The cloud top is assumed to be in the layer at which
the optical depth, vertically integrated from the top, first
exceeds 1. Both shortwave and longwave radiation are
calculated using the correlated k distribution method de-
scribed in Hansen et al. [1983]. In that method, radiative
calculations are performed on discontinuous domains that
are grouped according to absorption coefficient strength.
[9] The GCM fields used in this study are a 22-year period

of a 150-year control simulation for present climate con-
ditions in which atmospheric greenhouse gases are fixed at
1950 levels. Because the model assimilates no data, the years
designated as the control simulation (1950–2100) have no
relationship to actual years from 1950 to the present, but they
are used to measure climate drift for climate change experi-
ments [e.g., Miller and Russell, 2000, 2002]. The GCM
record used in the relationship study is for the period from
1979 to 1998, which corresponds to the period of record for
the TOVS data described in the next section, but not to actual
conditions in any particular year.

3. Observational Data Sets

[10] Two different data sets are used in the analysis and
described briefly in this section. The TOVS instrument has
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flown on NOAA polar-orbiting satellites since late 1978 and
has generated one of the longest and most complete satellite
data records in existence. The 20-year global TOVS data set
(1979–1998) was subsetted for the Arctic region north of
60�N, then the radiances were processed with a version of
the Improved Initialization Inversion (‘‘3I’’) algorithm
[Chédin et al., 1985; Scott et al., 1999] that was modified
to enhance accuracy over snow-covered and ice-covered
surfaces [Francis, 1994]. Orbital retrievals were averaged in
space to (100 km)2 grid cells and in time to produce one
Arctic-wide field per 24-hour period centered on 12 UTC:
the so-called ‘‘Path-P’’ data set [Francis and Schweiger,
2000; Schweiger et al., 2002]. The spatial grid is the same
as that used for polar passive microwave products and other
Arctic data sets (the Equal-Area SSM/I Earth (EASE) grid
[Armstrong and Brodzik, 1995]).
[11] The products contained in the Path-P data set include

atmospheric temperature and moisture profiles, surface skin
temperature, cloud cover and height, a variety of boundary
layer parameters, and sea level pressure (extracted and
regridded from NCEP/NCAR Reanalyses [Kalnay et al.,
1996]). Path-P products have been extensively validated
with measurements from various field programs and ice
station data [Schweiger et al., 2002]. Retrieved skin temper-
atures agree surprisingly well with 2-m air temperatures
[Chen et al., 2002] particularly given the difficulties in
retrieving cloud properties in high latitudes and the inter-
ference of clouds with surface temperature retrievals. The
Arctic is typically very cloudy, and when cloud cover
changes, snow/ice surface temperatures often respond sub-
stantially. The RMS errors in retrieved upper-level temper-
atures generally decrease with height and are less than 3 K,
except near the tropopause where they increase to about 4 K.
Biases are less than 1.5 K at all levels and are generally

slightly negative (retrievals too cold) in the upper tropo-
sphere and slightly positive in the lower troposphere.
[12] Cloud properties are much more difficult to validate.

Not only are there few observations available, but conven-
tional surface-based reports are inherently different from
satellite retrievals in several ways. As viewed from the
surface, low clouds may block the view of high clouds,
while from space high clouds obscure low clouds. In
addition, surface observers report the fraction of the sky
covered by cloud with no estimate of its optical thickness,
while satellite retrievals are affected by the clouds’ emis-
sivity. Despite these issues, monthly mean values of the
Path-P cloud fraction have been previously compared with
cloud cover estimates by surface observers and to retrievals
from the International Satellite Cloud Climatology Project
(ISCCP) D2 product [Schweiger et al., 1999] and to lidar-
retrieved cloud cover during SHEBA [Schweiger et al.,
2002]. While the ISCCP algorithm is apparently confounded
by the extreme conditions existing in the Arctic, the Path-P
product agrees well with conventional observations. The
DLF values from TOVS are calculated from retrieved

Table 1. Data Sets and Variables Examineda

Data Sources Variable SHEBA Site

TOVS Tskin 1980–1998
CLD 1980–1998
DLF Oct. 1997 to Sep. 1998

GCM Tsfc 1980–1998
CLD 1980–1998
DLF 1980–1998

SHEBA Tsfc Oct. 1997 to Sep. 1998
CLD Oct. 1997 to Sep. 1998
DLF Oct. 1997 to Sep. 1998

aTsfc, near-surface air temperature; Tskin, skin temperature; CLD, cloud
cover; DLF, downward longwave flux.

Figure 1. Map of the Arctic Ocean showing locations of the SHEBA camp and regions selected for
comparisons. The area within a rectangular cell designated with ‘‘W’’ is the winter portion of the SHEBA
track, and ‘‘S’’ is the summer portion.
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temperature and moisture profiles, cloud properties, and
additional information derived from TOVS brightness tem-
peratures [Francis, 1997].
[13] The SHEBA integrated data set used in this study

was obtained from http://www.atmos.washington.edu/
~roode/SHEBA.html. The SHEBA experiment was con-
ducted on pack ice in the Beaufort Sea from October
1997–1998, and its goal was to provide a comprehensive

observational data set for process studies, remote sensing
validation, and comparison with model simulations over the
Arctic Ocean [Uttal et al., 2002]. Extensive field data on the
atmosphere, ocean, snow and sea ice were collected during
this period. The integrated SHEBA data set includes a wide
range of daily atmospheric and oceanic measurements with
daily temporal resolution from rawinsonde soundings, lidar,
radar, meteorological surface observations, and a micro-
wave radiometer. Variables used in this study are downward
longwave flux (DLF), near-surface air temperature, and
cloud cover.

4. Comparison of Climate Variables at the
SHEBA Site

[14] In this section we examine and compare relationships
among climate variables at the SHEBA site in the Arctic
using SHEBA in situ measurements, TOVS satellite retriev-
als, and GCM output. The climate variables include surface
air temperature (Ts; skin temperature if from TOVS), cloud
cover (CLD), and DLF. These three variables are the most
important ones for the surface energy budget in winter, and
are more easily available from the observations. First we

Figure 2. Annual cycles of (a) surface temperature,
(b) cloud cover, and (c) downward longwave flux for
SHEBA, TOVS, and GCM at the SHEBA site. All are
based on 1 year (October 1997 to September 1998).

Figure 3. Interannual variability (standard deviations) of
(a) surface temperature and (b) cloud cover (as in Figure 2)
for TOVS and GCM based on monthly means during a 19-
year record (1980–1998).
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compare the annual cycles, the interannual variability, and
ranges of each of the variables from the three sources. We
then compare relationships between pairs of variables to
examine daily changes in one variable with respect to
changes in another, particularly in winter months when

we expect relationships among DLF, Ts, and CLD to be
strongest. TOVS retrievals are available from 1979 to 1998;
the corresponding 20-year period is obtained from the
GCM. The region examined in this paper is shown in
Figure 1 (72�–80�N, 145�–175�W). Table 1 lists the data
sets and availability of parameters.
[15] Differences in the data sets should be considered

while interpreting comparisons. The SHEBA surface air

Figure 4. Daily variability (standard deviations) of
(a) surface temperature, (b) cloud cover, and (c) downward
longwave flux (as in Figure 2) for SHEBA, TOVS, and
GCM based on daily values during the SHEBA period
(October 1997 to September 1998).

Figure 5. Accumulated probability comparisons at the
SHEBA site of (a) surface temperature, (b) cloud cover, and
(c) downward longwave flux. The solid line is GCM, the
dashed line is TOVS, and the dash-triple-dotted line is
SHEBA.
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temperatures are measured at 2 m above the surface, while
TOVS retrieves a skin temperature. This may result in
TOVS being 1�–2� colder than SHEBA primarily in fall,
winter, and spring when near-surface temperature inversions
are common. Hereafter, we use the term ‘‘surface temper-
ature’’ and the symbol Ts for all three data sets with the
understanding that SHEBA and GCM values are near-
surface air temperatures and TOVS is the skin temperature.
The SHEBA values are measured at a point and averaged
over 24 hours, while the TOVS and GCM values are area
averaged over the SHEBA track with a spatial resolution of
(100 km)2 and 5� � 4�, respectively. The mismatch of
scales is unavoidable in validating coarse model output with
surface-based point measurements. However, we expect that
relationships between climate variables should be less
affected by differing spatial scales than are comparisons
of absolute values. For the annual analysis, GCM variables
are averaged over the whole SHEBA region (seven grid
cells). For winter and summer the GCM values are averaged
over three grid cells (see Figure 1). Observations from the
SHEBA experiment are for 1 year only (October 1997 to
September 1998). The TOVS and GCM values correspond
to SHEBA dates. Although it is important to note that the
1-year GCM record for this period is not meant to correspond
to the actual conditions during that 1 year, the model’s
monthly means of DLF, Ts, and CLD for this period are
representative of the average climatology of the decade
surrounding it.

4.1. Annual Cycles and Interannual Variability

[16] Figure 2 shows the annual cycles of the three climate
variables at the SHEBA site for each data set. Figure 2a
shows that for all three data sets the annual range of surface
temperature is large with a maximum near 0�C in summer
when the surface is melting. In winter the GCM’s surface
temperature is warmer than TOVS and SHEBA temper-
atures. The largest discrepancy among data sets occurs for
cloud cover (Figure 2b). As mentioned in section 3, the
definition of cloud is different for each data set. The GCM
values do not include clouds with modeled optical depths
less than 1, and TOVS cloud retrievals may include low-
level ice clouds or so called ‘‘diamond dust’’, while the
surface observers do not. This may explain the GCM under-
estimating and the TOVS exceeding SHEBA values in
winter when diamond dust and thin clouds are common
[Curry et al., 1996]. The amplitude of the GCM’s annual
cycle is much larger than that of either TOVS or SHEBA.
For the GCM, cloud cover ranges between 15–85%, for
SHEBA between 40–100%, and for TOVS between 40–
80%. The GCM’s annual cycle is more similar to the
SHEBA observations with a minimum in winter and max-
imum in summer than it is to TOVS, which is fairly uniform
throughout the year. The GCM is more consistent with
surface-based observations [Huschke, 1969] with large sea-

sonal changes and low cloud cover in winter [Miller and
Russell, 2002]. However, when the Huschke climatology is
modified to include diamond dust [Curry et al., 1996], there
is better agreement with the TOVS annual cycle.
[17] An important climate variable for the Arctic energy

budget is the downward longwave flux (DLF). Figure 2c
shows that the amplitudes of the annual cycles in all three
data sets are in good agreement, with maxima near
300 W/m2 in summer and minima near 160 W/m2 in
winter. This suggests that the longwave component of the
GCM’s energy budget is well simulated despite the large
differences in cloud cover. With additional variables and
further sensitivity analyses, we expect to resolve this issue.
The DLF obtained from TOVS is also in good agreement
with in situ SHEBA measurements. The amplitude of the
annual cycle for TOVS is somewhat lower than for
SHEBA, as it is about 10 W/m2 too low in summer and
too high in winter. This is expected given the much
coarser spatial resolution of TOVS retrievals and conse-
quent reduction in variability. The similarity of the DLF
cycle to the surface temperature cycle is consistent with
other observations; these variables are closely related,
especially in winter [Guest and Davidson, 1994].
[18] In addition to comparing monthly means of the

climate variables as in Figure 2, it is important to understand
the variability and covariability of the parameters. We
examine both the daily variability within a given month
and the interannual variability. On the basis of monthly
means from 1980 to 1998, Figures 3a and 3b show that the
GCM’s interannual variability in both surface temperature
and cloud cover agrees well with TOVS, with the greatest
variability occurring in winter. Surface temperatures are
close to the melting point during summer in the Arctic,
and the variability is small.
[19] Figure 4 displays the standard deviations of the daily

values in each month for the three data sets. The daily
variability of the TOVS and GCM surface temperature is
smaller than that of SHEBA in winter and spring
(Figure 4a). For most of the year, TOVS and the GCM
have a smaller daily variability in downward longwave flux
than does SHEBA. All three data sets show the largest
variability in winter and smallest in summer for surface
temperature and DLF. Again, the largest discrepancy in
patterns among the three data sets is in the cloud cover.

4.2. Accumulated Probability

[20] The ranges of variable magnitudes are compared
among the three data sets by examining the accumulated
probabilities presented in Figure 5. The abscissa in Figure 5
shows the probability that a variable is less than a given
value on the ordinate. Because the 1-year model daily
record is not meant to correspond to actual measurements
during that year, Figure 5 illustrates the GCM’s ability to
represent the range of the actual climate.

Figure 6. (opposite) Covariability in daily changes of pairs of climate variables for each data source: (top) SHEBA,
(middle) TOVS, and (bottom) GCM. (a) Comparisons of daily changes in surface temperature and downward longwave
flux. (b) Fractional cloud cover and downward longwave flux. (c) Surface temperature and cloud cover. Each point
represents the day-to-day change in one variable versus the corresponding change in the second variable for the same day at
the SHEBA site (October 1997 to September 1998). The legend in each plot consists of two lines: The first line is S =
regression slope and R = correlation coefficient; the second line is RMS = the RMS difference.
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[21] For each of the three variables, the ranges of TOVS
values are smaller than those for SHEBA measurements. As
expected, DLF and Ts are high (low) when cloud amount is
high (low). The agreement among the three data sets is
surprisingly good for DLF. The GCM’s surface temperature,
however, is too high in colder conditions. The GCM has
many more clear days and always has fewer clouds than
observed. For low values of cloud cover, Figure 5 shows
that the modeled DLF and surface temperature are higher
than the SHEBA-observed values even though the modeled
cloud cover is lower than observed. This apparent incon-
sistency occurs, in part, because the GCM cloud cover
includes only clouds with optical depths exceeding 1, while
all optical depths are included in the calculations of DLF.
This leads to the GCM’s DLF being larger than would be

expected in modeled clear conditions, which leads to higher
than expected surface temperatures. In general, however,
DLF and surface temperature are consistent among the three
data sets.

4.3. Relationships Between Daily Changes

[22] To approach the question of how relationships and
sensitivities among variables contribute to climate processes
and feedbacks in the Arctic, we examine covariability
between pairs of climate variables. The regression slope
or sensitivity of these relationships can be used in the
classical feedback analysis formulation to estimate climate
feedbacks [Hansen et al., 1984]. If the different types of
observations (in situ and satellite) and the GCM show
similar relationships among climate variables, then we have
greater confidence that both TOVS satellite retrievals and
the GCM can be used to investigate Arctic climate feed-
backs. Where there are discrepancies in the nature of the
relationships, we attempt to discover why.
[23] To investigate these relationships, we use daily mean

values from the three data sets. Figure 6 shows the com-
parison of the daily changes for SHEBA, TOVS and the
GCM during the 1-year SHEBA experiment. Each point
represents the day-to-day change in one variable versus the
corresponding change in the second variable. For example,
Figure 6a indicates that the daily change in DLF is highly
linearly correlated (greater than 0.8 for SHEBA and the
GCM) with the daily change in surface temperature
for the three data sets. Furthermore, these same panels
quantify the relationship and show that for SHEBA meas-
urements, the DLF changes by 6.0 W/m2 for every degree
change in surface temperature and 6.8 W/m2 for the GCM.
For TOVS, the change in DLF is much smaller (1.9 W/�C
m2). This is likely caused by the fact that the TOVS retrieval
algorithm rejects the cloudiest cases, thus some of the
largest changes are omitted from the TOVS data set. All
the slopes are significant at the 95% confidence level. The
agreement between the GCM and SHEBA observations is
encouraging for evaluation of climate feedbacks.
[24] The results in Figure 6a cannot, by themselves, yield

the cause and effect relationship between temperature and
DLF. Does the surface temperature increase because the
DLF increases, or does the DLF increase because the
surface temperature increases? The positive feedback be-
tween the two variables is well known. If there is a positive
perturbation in one of the two variables, it will cause the
other variable to increase, but something else keeps them in
check. We examined lag-lead relationships between pairs of
daily-averaged variables, but we found no significant cor-
relations at this time interval. These correlations might
become significant if the variables are averaged over shorter
periods than 1 day. Ultimately, multivariate relationships
must be examined to explain system feedbacks, but under-
standing the relationships between pairs of climate variables
is a necessary first step.
[25] Figure 6b shows that daily changes in DLF and cloud

cover are highly correlated for both SHEBA observations
and the GCM, with DLF increasing by 0.6 W/m2 for each
percent increase in cloud cover. Another feature of the
GCM’s relationship is that there is much less scatter about
the regression line, which indicates that the values are less
sensitive to other variables not taken into account in this

Figure 8. Same as Figure 6, except for summer (June–
August) and only for the relationship between downward
longwave flux and cloud cover.
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study. This suggests that the GCM’s relationships are more
simple and deterministic than the real world. The range of
the GCM’s daily changes is smaller than that of SHEBA for
each of the variables. For SHEBA the daily changes in DLF
exceed 60 W/m2 while for the GCM they only reach
40 W/m2. Similarly for cloud cover there are many days
when the in situ SHEBA observations change by more than
50%, while the GCM’s daily changes are smaller. This is
likely due to the comparison of point measurements at
SHEBA with a spatially averaged value from the GCM
(seven grid cells). For TOVS, the correlation between DLF
and cloud cover is very low. Given the good agreement of
TOVS surface temperature and DLF with SHEBA measure-
ments, the low correlation may result from variability in
cloud emissivity being inextricably included in TOVS cloud
cover retrievals.
[26] We expect that there could be large differences in the

relationships shown in Figure 6 if winter and summer are
examined separately. Because there is no solar radiation
during winter, one would expect the correlation between
surface temperature and DLF to be higher. Figure 7 is
consistent with expectations in showing higher winter
correlations for all of the relationships presented in Figure 6.
One of the interesting features is that the change in DLF per
unit change in surface temperature is now larger for the GCM
than for the observations (7.4W/m2/�C versus 5.3W/�Cm2).
Compared to annual values, theGCM slope has increased and
SHEBA has decreased. The change in TOVS is much smaller
than for either the SHEBA observations or the GCM, but the
correlation coefficient has increased much more for TOVS
than for the others. This is likely due to reduced rejections of
TOVS retrievals for heavy overcast conditions, as thick
clouds are less prevalent in winter.
[27] In summer, changes in DLF are still related to

changes in cloud cover as indicated in Figure 8 from
SHEBA and GCM data. Large increases in DLF are
correlated with increases in cloud cover. The inability of
TOVS to retrieve surface temperature and DLF in overcast
conditions is the likely reason for TOVS relationships
differing from the other two, as thick stratus clouds are
common in summer. Relationships between cloud cover and
the other climate variables differ among the three data sets.
One possible reason is that cloud cover might not be the
best cloud variable to use. Perhaps cloud base height or
cloud optical depth would be more elucidating, but these
variables are not readily available. Because surface temper-
ature changes in summer are always near zero, we would
expect little correlation between surface temperature and
other variables. With such small daily increments in surface
temperature, the linear regression is not robust and the
resulting slope is not reliable, and therefore is not shown.
[28] The relationships in this section are based on 1 year

of observations and 1 year of GCM output. Because we
have 22 years of GCM output, we can examine the
interannual variability of the model’s relationships between
variables. Figure 9 presents a time series of the GCM’s
wintertime relationship between DLF and surface tempera-
ture from 1979 to 2000. Figure 9 is constructed by selecting
GCM grid cells that contain the SHEBA winter site and
regressing DLF against surface temperature for each of the
22 winters (mean of December, January, and February).
Figure 9 shows significant variation in the relationship from

year to year, with a minimum value of the regression slope
of 4.9 W/m2/�C and a maximum of 7.4 W/m2/�C, which
happens to be the winter of the SHEBA year, even though
the anomalies of individual variables are near zero. The
average regression slope during the 22-year period is 6.1 W/
m2/�C, which is closer to the regression slope calculated
from SHEBA measurements (5.3 W/m2/�C). We cannot
calculate the interannual variability of this relationship from
the observations because we only have 1 year of data from
SHEBA, but future work will include a calculation
from Russian ‘‘North Pole’’ station data, which could be
illuminating.

5. Discussion and Conclusions

[29] A standard method of evaluating a GCM’s represen-
tation of the real climate is to compare simulated climate
variables with observations of the same variables.
Figures 2–5 illustrate such comparisons for monthly means
and standard deviations of surface temperature, cloud cover,
and downward longwave flux. The GCM output is gener-
ally consistent with both in situ SHEBA measurements and
TOVS satellite retrievals except for cloud cover, which is
attributable, in part, to the differences in the way clouds are
defined in the three sources.
[30] The seasonal cycles of surface temperature and

downward longwave flux are also consistent among the
three data sets. Again, there are significant differences in
cloud cover. Inclusion of diamond dust in TOVS cloud
cover retrievals may account for its values exceeding those
from both GCM and SHEBA values in winter. Under-
estimates by the GCM likely result from its cloud fractions
including only clouds with optical depths larger than 1.
[31] This standard validation method is informative, but

only tells part of the story related to investigations of
feedback processes. Feedbacks involve relationships and
sensitivities among variables, hence our focus on the
covariability of three climatically important quantities in
this study. For a model to represent feedbacks correctly, it
must represent relationships and sensitivities among varia-
bles correctly. Moreover, the GCM’s ability to provide
plausible scenarios of future climate change also depends
on the realism of these relationships. To address this point,
we compare the covariability among three variables (surface
temperature, cloud cover, and DLF) to evaluate the GCM’s
performance. The results are encouraging.
[32] Table 2 summarizes the relationships between pairs

of climate variables at the SHEBA site. Slopes of the
regression lines for each pair are given, with the correlations
in parentheses. An asterisk after a correlation indicates that
it is not significant at the 95% confidence level. The highest
correlations occur for the relationships between DLF and
surface temperature in winter for both the GCM and the in
situ SHEBA data and between DLF and cloud cover for the
GCM. The linear correlations for TOVS are somewhat
lower, likely because of the lack of retrievals in overcast
conditions. In winter the change in DLF per unit change in
temperature is lowest for TOVS (2.0 W/m2/�C) and highest
for the GCM (7.4 W/m2/�C) as compared to the SHEBA
value of 5.3 W/m2/�C. In summer the correlations between
DLF and cloud cover are high for the GCM and SHEBA,
but the correlation for TOVS is low and shows no relation-
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ship between the two variables. This supports our possible
explanation for lower correlation between TOVS variables
because in summer, cloud cover is largest, TOVS rejection
rates are highest, and thus TOVS covariabilities omit some
of the largest daily changes.
[33] Chiacchio et al. [2002] performed a sensitivity study

on the likely errors in DLF resulting from uncertainty in
various parameters using a radiative transfer model called
Streamer [Key and Schweiger, 1998]. The sensitivity of
DLF to perturbations in the surface temperature for standard
Arctic winter and summer conditions is 1.3 W/m2/�C and
2.8 W/m2/�C. These numbers are much smaller than those
we obtain from both SHEBA and the GCM. There are

several possible reasons why the Chiacchio values are
smaller than observed sensitivities. The most likely is that
they examine the corresponding changes in DLF given
changes in one particular variable by holding constant all
other variables. In the real world, every climate parameter
may change simultaneously. Our results are more realistic in
this sense. Chiacchio et al. [2002] also point out that surface
temperature, cloud cover, and cloud base height are indeed
among the factors to which DLF is most sensitive.
[34] Table 2 shows that all three data sets indicate a high

correlation between temperature and cloud cover in winter.
Not only are the correlations high, the magnitudes of the
responses are also similar, ranging between 0.06� and

Table 2. Relationships Between Variable Pairs by Season and Data Set

Season

SHEBA TOVS GCM

Slope of
Regression Line

Correlation
Coefficient

Slope of
Regression Line

Correlation
Coefficient

Slope of
Regression Line

Correlation
Coefficient

DLF versus Ts, W/m2/�C
Annual 6.0 0.82 1.9 0.53 6.8 0.84
Winter 5.3 0.91 2.0 0.62 7.4 0.86
Summer 17.7 0.65 �0.6 �0.12a �0.0 0.0a

DLF versus CLD, W/m2/%
Annual 0.6 0.67 0.1 0.14 0.6 0.81
Winter 0.4 0.64 0.3 0.42 0.7 0.91
Summer 0.7 0.67 �0.04 �0.08a 0.5 0.85

Ts versus CLD, �C/%
Annual 0.06 0.52 0.03 0.20 0.05 0.52
Winter 0.06 0.54 0.09 0.47 0.06 0.69
Summer 0.00 0.17a �0.03 �0.39 �0.01 �0.31

aNonsignificance at the 95% confidence level.

Figure 9. Time series of the GCM regression slope for daily changes in DLF against those in surface
temperature during winter (DJF) for 1979–2000 over the SHEBA site.
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0.09�C per percent change in cloud cover. As expected, the
relationship is much weaker in summer and not reliable.
There are several reasons for the differences between these
relationships in summer and winter. First, there is no solar
radiation in winter, thus DLF is primarily controlled by
cloud emission. More cloud cover reemits more longwave
radiation back to the surface. Second, the surface tempera-
ture over the Arctic Ocean changes little in summer because
it is confined to near the melting point of snow and sea ice.
This constraint of the surface temperature in summer
explains why the high correlation between DLF and cloud
cover is not accompanied by a similar response between
cloud cover and surface temperature. In summer the in-
creased DLF in heaviest overcast will be partially compen-
sated by decreased downward shortwave radiation.
[35] In our study, this method of evaluating the GCM’s

output by comparing the relationships and sensitivities
among pairs of climate variables provides additional useful
and valuable information beyond the standard comparison
methods. By looking at these covariabilities, we can begin
to identify physically based causes for agreement and
disagreement and to focus on physical processes that should
be more carefully investigated. Both TOVS satellite retriev-
als and GCM output are compared with the in situ SHEBA
measurements in this investigation. Standard comparisons
with observations (Figures 2–5) show that TOVS satellite
retrievals agree with SHEBA quite well. However, inves-
tigations of the relationships between pairs of variables
weaken this consistency, and its shortcomings are high-
lighted in daily relationship comparisons. TOVS always has
much weaker relationships between each pair of variables
compared to SHEBA and the GCM, especially those
involving the cloud cover, which we believe is largely
caused by the lack of retrievals under overcast conditions:
the cases with large �DLF/�Ts will be missed because
they occur when thick clouds come and go. The TOVS
cloud cover retrievals in polar conditions are being updated
and improved. We hope to apply the same study to the new
version of TOVS when it is available to see whether the
relationships remain the same.
[36] Our results indicate that the GCM provides a rea-

sonable representation of both the annual cycles and the
variability of three selected climate variables. There is also
good agreement with observations when we compare rela-
tionships between daily changes of climate variables. This
brings us a step closer to understanding the feedbacks that
operate in the Arctic and are believed to make the region
sensitive to climate change. Our results provide additional
confidence in future climate change scenarios obtained from
the model. The relationships are stronger than observed,
however, which indicates the potential influences of unre-
alistic, missing and/or incomplete parameterizations in the
GCM.
[37] This paper describes another method to evaluate a

model’s ability to simulate climate processes. The Arctic is
a data sparse area for which long-term, basin-wide, com-
prehensive, and accurate data sets are not available at
present. The results from this study provide confidence in
the GISS GCM’s ability to simulate the relationships
between climate variables, and to simulate climate change
in response to increasing atmospheric greenhouse gases
[e.g., Miller and Russell, 2000, 2002]. While many issues

still remain, it is clear that progress has been made, and an
alternative method of evaluating a model’s representation
has been demonstrated.
[38] Finally, we note that the relationships and sensitivi-

ties between climate variables are not fixed over time and
space. By comparing the temporal evolution and spatial
pattern of the relationships in model output with the
corresponding covariability in observed values, we obtain
a better understanding of model sensitivities and open a new
window for evaluating the performance of a global climate
model. Aires and Rossow [2003] provide an encouraging
theoretical framework for this next step.
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